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Partitioning Arrangements of Lines: II.

Applications

Pankaj K. Agarwal^

Courant Institute of Mathematiccd Sciences
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ABSTRACT

In this paper we present efficient deterministic algorithms for various prob-

lems involving lines or segments in the plane, using the partitioning algorithm de-

scribed in a companion paper [Ag]. These applications include: (i) An 0{Tn?l^v?l'^-

log^''^ 71-log'*'^'' -^ 4- (m + n)logn) algorithm to compute all incidences between

m points and n lines, where lu is a constant < 3.33; (ii) An 0{vn?I^Ti?/^\o^l^ n-

log"''^ -^ -f {m-\-n) log n) algorithm to compute m faces in an arrangement of n

lines; (iii) An 0(n''/^log*'^''"^'^~' n) algorithm to count the number of intersections

in a set of n segments; (iv) An O(n'*/''log*'^"'"^*/^ n) algorithm to count "red-blue"

intersections between two sets of segments, and (v) An O(n?/^\og'^'^^ n) algo-

rithm to compute spanning trees with low stabbing number for a set of n points.

We also present an algorithm that, given set of n points in the plane prepro-

cesses it, in time 0{n\/m\o^'^^'^ n), into a data structure of size 0(m) for

n log n < m < n^ , so that the number of points of 5 lying inside a query triangle

can be computed in 0(-^ log'''^ n) time.

^Work on this paper has been supported by Office of Naval Research Grant N00014-

87-K-0129, by National Science Foundation Grant DCR-83-20085, and by grants from

the Digital Equipment Corporation, and the IBM Corporation.

^A preliminary version of this paper appears in Proceedings ofb*'^ ACM Symposium
on Computational Geometry, 1989, pp. 11-22.





Introduction

1 Introduction

In the first part of this paper [Aga]. we considered the following problem:

Given a collection C of n lines in the plane, partition the plane into 0{r'^)

triangles, for any given I < r < n, so that no triangle meets more than 0{^)

lines of C.

The existence of such a partitioning has been established in [CF], [Maa]. A somewhat

weaker result, based on probabilistic analysis, has been obtained earUer in [HW], [Cla];

it asserts the existence of a partitioning of the plane into 0(r'^) triangles, each meeting

at most O(-logr) hnes of C. Such a partitioning can be obtained very efficiently by

a randomized algorithm that chooses a random sample of r lines of C and triangulates

the arrangement of the chosen lines. Deterministic constructions of a partitioning with

the stronger property mentioned above have been given in [CF], [Maa]. The latter work

presents an O(nr^log^r) algorithm for the partitioning. We obtained an algorithm for

the above partitioning which is almost an order of magnitude faster than the algorithm of

Matousek [Maa] in terms of r. Specifically, the main result of the first part of this paper

can be stated as follows:

Theorem 1.1 ([Aga]) Given a collection C of n lines in the plane and a parameter 1 <

r <n, the plane can be partitioned into 0{r^) triangles, in time 0(nr log n log*^ r), .so that

no triangle meets more than O(^) lines of C in its interior, where u is some constant

< 3.33.

D

Remark 1.2: Our algorithm for partitioning the plane works in two phases. In the first

phase we obtain 0{r^ log"^ r) triangles, each of them meeting at most 0{j) lines, and then in

the second phase we reduce the number of triangles to 0{r'^), still maintaining the property

that each triangle meets at most 0{n/r) lines. In several of the applications to follow we

do not need the second phase, because the number of triangles produced in the first phase

is sufficiently small to imply the asserted time complexity of the solution. However, for

notation simplicity, throughout this paper we analyze the running time assuming that no

more than O(r^) triangles have been produced. In the final section we show why we cein

avoid the second phase in certain applications without affecting their worst case running

time.

This partitioning is useful to obtain divide and conquer algorithms for a variety of

problems involving lines (or line segments) in the plane. Typically, an original problem

involving the lines of £ is split into 0{r^) subproblems, one per triangle in the resulting

paxtitioning, each involving only O(^) lines of C meeting the corresponding triangle. These

subproblems are then solved either by recursive application of the partitioning technique,

or, if the size of the subproblems is sufficiently small, by some different and direct method.
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As explained in the first part of tiie paper, a reasonable lower bound on the cost of

the partitioning problem, in this divide and conquer context, is n[nr), because this is the

worst-case total size of the input to the Oir'^) subproblems, that is the total number of

hne-triangle crossings. The best previous technique for constructing such a partitioning,

that of [Maa]. is about an order of magnitude worse than this bound (in terms of r). As

it turns out. this overhead is too expensive for most applications when r is large. Thus

Matousek's algorithm can be applied only with small, constant values of r. This has two

disadvantages. One is that the algorithm becomes recursive and thus more complicated;

the other disadvantage is that the resulting time complexity is larger, by a factor of the

form 0{n^), for any 6 > 0, than what could be obtained by a judicious choice of a large

value of r.

In this second part of the paper we apply our partitioning algorithm to obtain fast al-

gorithms for a variety of problems involving lines or segments in the plane. The problems

that benefit from our algorithm have the common property that they can be solved effi-

ciently using the random sampling technique. Our algorithms for most of these problems

have the same flavor. We divide the original problem into 0{r^ ) subproblems, as explained

above, then solve each subproblem directly by a simpler but slower algorithm, and finally

merge the results of these problems. A considerable part of this paper is devoted to the

discussion of these simpler algorithms, and to details of the merging. In several applica-

tions the merging is trivial (e.g. in problems (i), (iv), (v) below), but in other applications

. it may require some extra nontrivial techniques.

The paper is organized as follows. In Section 2 we describe the geometric concepts

and notations used in this paper, and then in subsequent sections we consider various

applications. The following list summarizes the results obtained in this paper:

(i) Computing incidences between lines and points (Section 3): Given a set of n lines

and a set of m points in the plane, compute how many lines pass through each

given point. (Alternatively, compute the lines passing through each point, or just

determine whether any line passes through any point.) Edelsbrunner et al. [EGSh]

have given a randomized algorithm for this problem whose expected running time

is 0(m2/^-*n2/3+2« + (m -(- n)logn), for any 6 > 0. A slightly improved, but still

randomized, algorithm has been given in [EGH*]. We present a deterministic eJgo-

rithm with 0{m^^^n^^^ \og^^^ nlog"^^^ ^ + (m + n)logn) time complexity. Since the

maximum number of incidences between m points and n lines is 6(m^/^n^/^ + m + n),

our algorithm is close to optimal in the worst case.

(ii) Computing many faces in an arrangement of lines (Section 4): Given a set of n
fines and a set of m points in the plane, compute the faces in the arrangement

of the lines containing the given points. Edelsbrunner et al. [EGSh] have given a

randomized algorithm for this problem with expected running time 0{ rv?l^~^n^l^'^'^^-\-

nlognlogm), for any <5 > 0. As in the case of the incidence problem, a slightly
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better randomized algorithm has been given in [EGH*]. We present a deterministic

0{m}l^n^^^ log^''^ n log"'''^ -^ + ( m + n ) log n ) algorithm, again coming close to optimal

in the worst case (see [CEGSW] for combinatorial bounds).

(iii) Computing man\- faces in an arrangement of segments (Section 5): This is the same

problem as the previous one except that now we have a collection of segments instead

of hues. The previous best solution is by Edelsbrunner et al. [EGSh], which is ran-

domized and has expected running time 0(m^/^~*n^/^+^*+ nQ(n) log^ nlogm), for any

(5 > 0, where Q(n) is a functional inverse of Ackermann's function. We present a de-

terministic algorithm with improved time complexity 0(m^''^n^/^ log n log^'^"*"^ ^ +
n log'' n -\- m log n )

.

(iv) Counting segment intersections (Section 6): We give a deterministic Oin"^^^ log''^''"^'''^ n
'

algorithm to count the number of intersections in a given collection of n segments;

this is an improvement over Guibas et al.'s algorithm [GOSa], which counts the

intersections in 0{n'*^'^'^^) randomized expected time, for any 6 > 0.

(v) Counting and reporting red-blue intersections (Section 7): Given a set Tr of n^

"red" segments and another set Ff, of rib "blue" segments in the plane, count the

number of intersections between T^ and Ft, or report all of them. (In this problem,

we need to ignore the potentially large number of intersections within Tr or within

Ffc.) The previous best solution is by Agaxwal and Shaxir [AS], which reports all

K red-blue intersections deterministically in 0{{nr^ynb + Uby/n^ + K)logn) time,

where n — Ur + nj,. We give a deterministic O(n''/"'log''^"'"^''"' n) algorithm to fount

all red-blue intersections. It ccui also report all K red-blue intersections in time

0(n^/Mog(-+2'/3n + A').

(vi) Implicit point location problem (Section 8): Given a collection of m points and a

collection of (possibly intersecting) n triangles in the plane, find which points lie in

the union of the triangles. This turns out to be a special case of a general problem

of implicit point location in planar maps formed by overlapping figures. We present

a deterministic algorithm with O(m^/^n^/^log^^^nlog"'^^ -4= + {m + n)logn) time

complexity.

(vii) Approximate half-plane range query (Section 9): Given a set 5 of n points in the

plane and a paxameter (not necesseirily constant) e > 0, preprocess them so that for

any query line i, we can approximately count the number of points lying above £

with an error of at most ±en. We give an algorithm that preprocesses 5, in time

0( J log n log"' i), into a data structure of size O(-), so that a query can be answered

in O(logn) time.

(viii) Constructing spanning trees with low stabbing number (Section 10): Given a set 5 of

n points in the plane, we present an C>(n^/^ log'^"'"^ n) algorithm to construct a family
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of k = O(logn) spanning trees Ti, ... ,Tk of S with the property that, for any line

£ there is tree T,, such that i intersects at most 0{-,/n) edges of T,. Moreover, with

additional preprocessing of 0(n logn) time and 0(n) space, the tree 7, corresponding

to a query line ( can be determined in O(logn) time. The previously best known

algorithm is by Matousek [Mab], which runs in 0(n'^/'' log* n ) time, and. moreover,

produces a stabbing number 0(>/nlog^n) instead of O(v^).

(ix) Space query-time tradeoff in simplex range searching (Section 11 ) Given a set 5 of n

points in the plane, preprocess them so that for any query triangle, we can quickly

compute the number of points contained in that triangle. We give an algorithm with

0(-^log"^^^ n) query time, using 0{m) space. The preprocessing time is bounded by

0{n^yrn log'^'^^ ^^ n). Similar bounds have been obtained independently by Chazelle

[Che].

(x) Overlapping planar maps: Given two planar maps P, Q. and a bivariate function

Fp(x,y). FQ{x,y) associated with each of them, such that over each face of P the

function Fp has some simple structure (e.g. it is constant, linear, or convex over each

face), and similarly for Q, determine a point that minimizes Fp{x,y) — FQ{x,y).

We show that if the maps satisfy certain conditions, then an optimal point can be

computed in 0(n'*/''log'"'"'"^'''^n) time, where n is the total complexity of the two

maps. The details of this application can be found in [Age].

2 Geometric Preliminaries

This section defines the geometric concepts, and formalizes the notation that we will be

using in this paper. Let £ = {£i,£2, • • • ,^n} denote a set of n lines in the plane. These lines

induce a planar map called the arrangement A{C) of £, whose vertices axe the intersection

points of lines in £, edges axe maximal connected portions of lines in £ not containing a

vertex, and faces are maocimad connected portions of the plane not meeting any edge or

vertex of A{C). See [Ed] for more details. Let /(p) denote the face of A{C) containing the

point p. For a non-vertical line £, we use ^'^ (resp. £~) to denote the half plane lying above

(resp. below) L

For ajiy point p G H ,
we define its level to be the number of lines in £ lying above

it (not counting the lines passing through p). For any < A: < n, the k-level of A{C) is

the set of edges of A{C) whose level is k. A A--level of AiC) is an x-monotone polygonal

chain with two unbounded rays. We call an x-monotone polygonal path 11 (not necesseirily

formed by the edges of A{C)) an e- approximate k-level for e < fc, if it hes in the strip lying

between the k - e and A; + e levels of A{C). A set of e-approximate 2€z-levels, for i < [^J,
is CEdled an e-approximate leveling of A(C).

Another geometric concept that we use in this paper is duality (see [Ed]). In R^, the
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Computing or Detecting I.n'cidences between Points and Lines 5

dual of a line is a point, and the dual of a point is a line. The duality transformation can

be chosen in such a way that it preserves the "above-below" relationship between points

and lines. The dual of a line segment pq is a double wedge formed between the dual lines

p', q' of p, q respectively, and not containing the vertical line through their intersection

point. We denote the dual of a feature (point, line or segment) 7 by 7* (see figure 1).

\ e

Figure 1: A Segment e = ab and its dual e'

3 Computing or Detecting Incidences between Points

and Lines

Consider the following problem:

Given a set C = {ii, . . . ,^„} ofn lines and a set P = {pi, ... ,Pm} ofm points

in the plane, for each point p, compute the lines in C passing through it. This

is an extension of Hopcroft 's problem which asks to determine whether there

is a point in P lying on a line in C.

Szemeredi ajid Trotter [STr] showed that the maximum number of incidences between

n lines and m points is Q{m^^'^n^^^ + m + n) {a much simpler proof, with a substantially

smaller constant of proportionality, appears in [CEGSW]). Edelsbrunner et al. [EGSh]

have given a randomized algorithm for computing all incidences; its expected running

time is 0(m^/^"*n2/^+^* + (m + n)logn), for any ^ > (see also [CSY]). Like many other

randomized algorithms of this kind, this algorithm can be made deterministic without

any additional overhead, using Matousek's algorithm [Maa]. A slightly faster randomized

algorithm is given in [EGH*] with 0(m^/^n^/^ log"* n + {m -\- n^/^) log^ n) expected running

time, which however is not known as yet to admit such "cheap" determinization. In this
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Computing or Detecting Incidences between Points and Lines

Figure 2: An instance of the incidence problem

section we first present a very simple algorithm whose running time is roughly m>/n log^'^ n;

this, combined with our partitioning algorithm, will yield a deterministic algorithm that

is faster than the preceding ones.

We can assume that m < n^, because otherwise we can compute all incidences in time

0{n^ +m log n ) = 0{m log n) by constructing the arrangement of £ and locating in it each

of the points.

Divide the set P into t disjoint subsets Pi, ... ,P(, each of size at most [y]. For each

P,, we compute the incidences between P, and £ as follows. Dualize the lines £j to points

£*, ajid the points p_, to lines p*, so we have a set P* of [y] lines and a set £* of n points

in the plane. Since duality preserves incidences, it suffices to determine the points of £*

lying on each line p*; this ceui be done by constructing the arrangement A{P*), processing

it for fast point location as in [EGSt], and locating in it each of the points of £*. The

cost of all this is O (^ + nlogn) (cf. [EOS], [EGSt]). Summing over all P.'s, the overall

running time becomes

T{m,n) = Om^ + nlognH = of^+nHognJ .

For ^ =
m

y/n log n
, the totaJ running time is

T{m,n) = O(m\/nlog'''^n + nlogn). (3.1)

Next, we describe the main algorithm. First, partition the plane into M = 0{r'^)

triangles Ai, ... , A^ so that no triangle meets more than O(^) fines of £, for some r
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to be specified later. Let P, (resp. £,) denote the set of points (resp. lines) lying inside

(resp. meeting the interior of) the triangle A,; let n, (resp. m,) be the size of £, (resp. P,).

The sets £, are computed by determining the triangles intersected by each line of C. as

described in [Aga], and the sets P, are obtained, in time 0((r^ +m)logr), by locating each

point of P in the planar subdivision formed by the triangles A,. The incidences between

the lines and the points lying on the triangle boundaries can be easily computed in time

0{{m -\- nr) log n), once we have distributed the lines over the triangles. We then apply.

for each triangle A,, the above algorithm to determine the incidences between P, and £,

within A,. Since partitioning the plane takes 0(nr log n log'^ r) time (cf. Theorem 1.1),

the total time T(m,n) spent in computing the incidences between n lines and m points is

therefore at most

A/
,2r(m,n) < ^T(m,,n,) 4- 0(r logr + mlogn + nrlognlog"'r)

»=i

M
= ^0(m.V^log^/^n, + n.logn.) + O((m + nrlog'"r)logn) (3.2)

Since n, = 0{j), (3.2) becomes

T{m,n) = O J- log^/^ n ^m. -f 0((m + nr log^'r) log n)

fmyVn j/o \
= 0\ —73- log ' n + m log n -f- nr log'^ r log n (3.3)

V V^ /

because > m, = m. iSow choose r = max < rr; T~r; , 2 >; since m < n . we^ \ni/3 1og^/3nlog^-/^^'
J'

have r < n as required. Therefore (3.3) gives

T(m,n) = ofm^/V/Mog2/3n-log-/3_^ + (m + n)logny

Hence, combining this with the case m > n^ , v/e have

Theorem 3.1 Given a set of n lines and a set of m points in the plane, we can compute

the lines passing through each point m time 0{m?'^n^^^\o^^^ n-\o^^^ —=-\-{m + n)\ogn).

(In particular, we can determine whether any line passes through any point within the same

amount of time.)

D

4 Computing Many Faces in Arrangements of Lines

Next we consider the following problem:
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Computing Many Faces in Arrangements of Lines

Given a set C = {ii Cn}ofn lines and aset P — {pi, ... ,pm} ofm points,

compute the faces of A(C) containing one or more points of P.

Clarkson et al. [CEGSW] have proved that the combinatorial complexity of in distinct

faces in any arrangement of n lines in the plane is 0{m'^^^n^^^ + n) (see also [Ca]), and

Edelsbrunner et al. [EGSh] have given a randomized algorithm to compute m distinct

faces, whose expected running time is 0(m^''^~*n^/^"''^''^ + n logn log m), for any 6 > 0. This

algorithm can be made deterministic, without substantially changing its time complexity,

using the original technique of Matousek [Maa]. As in the case of the incidence problem, a

slightly faster randomized algorithm, for large values of m, is presented in [EGH*] and has

0(n'^/-^ log^ n + m^^'^n'/^log'' n) expected running time, but we do not know of any way

to make it deterministic without substantially increasing its running time. We present a

deterministic algorithm that computes these faces in time O(m'^'''^n'/''log^'~^nlog'^^"' -^ +
n logn).

Similar to the previous section, we first give a slower Oimy/nlog'^ n + n log n ) algorithm

for this problem and then, using the same divide and conquer technique, we obtain an

algorithm with the asserted time bound. Without loss of generality we can assume that

m < n^, for otherwise the faces can be computed in time Oimlogn) by constructing the

entire arrangement A{C). Our slower algorithm works as follows.

Figure 3: Face in an arrangement of lines, and its dual

Partition the set P into t disjoint sets Pj, . . . , P( so that P, contains m, < [y] points.

We show how to compute the faces oi A(C) containing the points of P,, and repeat this

procedure for sll i < t. Let £* denote the set of points dual to the lines £, and let P*
denote the set of lines dual to the points in P,. Let / be a face oi A{C) containing some
point p. For each hne £ e C bounding /, its dual point t is such that the dual line p* can
be moved (actually rotated around some point) to touch t, without crossing any other
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point of £* while rotating. In other words, the dual of the face / containing a point p

corresponds to the portions of the convex hulls CH(£*n(p*)+) and CH(£*n(p*)-) between

their common tangents, where (p*)"^. {p')~ denote the half planes lying respectively above

and below p*, as shown in figure 3. Therefore, it suffices to describe how to compute the

convex hull of the points in £' lying above or below the hne p*, for each hne p' € P*.

First, compute the arrangement AiP*). Let V denote the dual of the planar graph

formed by A{P*), i.e. the vertices of V correspond to the faces of A{P^), and there is an

edge 4)jk between two vertices Vj, v^ of V if the corresponding faces fj.fk of A{P,) share

an edge Cj^ in A{P*) (see figure 4). Let C* C C* denote the set of points lying in the face

fj e A(P*). For each £j, compute its convex hull CH(£*). We associate C* and its hull

with the node Vj of V.

Figure 4: AiC), A{P^) and the dual graph V

Let T denote any spanning tree of T>\ it can be easily computed in time 0{Tnf). If

T contains a subtree of T, all of whose nodes axe associated with empty subsets of £*,

we remove that subtree from T. It is easily seen that a line p* € P* intersects at most

m, — 1 edges of T (in the sense that the two faces of A{P*) connected by such an edge lie

on different sides of p*). Perform a depth first search on T and connect the vertices of T
in the order they axe first visited by the depth first traversal; this gives a spanning path

n with the property that a line p* 6 P* intersects at most 2(m, — 1) edges of 11 (in the

saxne sense as above cf. [CW]), and that each edge of 11 is intersected by exactly one Hne

of P*. Next we construct a spanning path C of £' from IT by modifying each vertex Vj of

n, depending on the caxdinality of CH(£*). There are three cases to consider:

(i) |CH(£*)| = 0: remove the vertex Vj and the edges <^_,-i,j, <^j,j+i from 11, and add

the edge (?!»j_i,_,+i to 11 (figure 5b); this shortcuting may be repeated several times if
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? _ _ _ - -o

V,_l
(a)

tj-i

^'j+i Vj+i

^'j-i
(d)

j+i

I'j-i

(e)

Figure 5: Transforming a vertex Vj of 11; a: vertex Vj of IT, b: Vj is deleted from 11, c, d, e: Vj is

replaced by CH(£;)

needed, producing at the end a shortcut edge tphk'-

(ii) |CH(£;)| < 1: replace the vertex u_, by CH(£*) (figure 5c).

(iii) |CH(£;)| > 2: let ^, ^ be two adjacent vertices of CH(£;). Replace Vj by CH(£*),

maJce the edge <pj-i,j (resp. </>_,,_,+! ) incident to t^ (resp. C^) (figure 5d, e), and if

|CH(£;)| > 2, then remove the edge Zp; from CH(£*) (figure 5e).

It is easily seen that the resulting structure is a spanning path C of £* (see figure 6).

Lemma 4.1 A line p* £ P* intersects at most 2(m, — 1) edges of C.

Proof: Let p* € i^* be a line intersecting s edges of II. We prove that p* intersects at

most 5 edges of C, by showing that each intersection between p* and an edge of C can be

charged to an edge of II intersecting p*, in such a way that no edge of II is charged more
than once. There cire three types of edges in C: (i) edges that were already present in II

(e.g. T\il in figure 6), (ii) edges of CH(£*), for some u, G T (e.g.^ in figure 6), and (iii)

edges that were introduced while removing a vertex of IT (e.g. t^il in figure 6). We charge

an intersection of P* with an edge of type (i) to the edge itself. Edges of type (ii) do not

intersect p*, because CH(£*) lies inside a face of A{P*). Finally, if p* intersects an edge

<i>k.k' of type (iii) (i.e. a shortcut edge introduced while deleting vertices from II), then p*

must intersect at least one edge <i)j,j+\ of E, for ; = A;, A: + 1, ... , A:' - 1. We can therefore

charge this intersection to (i>j,j+\. It is easily seen that we charge only those edges of II

that intersect p* and no edge is charged twice. Hence p* intersects at most 5 < 2(m, - 1)

edges of T.

D
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a

> -

^ - o

. -6

n

Figure 6: T. IT and C for points of C* shown in figure 4

Edelsbrunner et al. [EGH*] have shown that if T is a spanning path of a set 5 of k

points in the plane, then T can be preprocessed in 0{k\ogk) time so that, for any hne £

intersecting at most 5 edges of T. CH(5n£''") can be computed in 0{s\og^ k) time. Since in

our case k = m, and s < 2m,, CH(£* flp*), for p* G P* can be computed in 0(m, log^m.)

time, which imphes that the total time spent in computing the faces in A{C) containing

the points of P, is bounded by O ^^ log^ m + n log nj

.

However, Edelsbrunner et al.'s procedure returns only an implicit representation, which

they referred to as the "necklace representation", of the desired faces. That is, the out-

put of their algorithm is a list of pointers, each pointing to some node storing a disjoint

portion of the convex hull, intermixed with "bridging edges" that connect these portions

in the overall hull. If we want to compute each desired face explicitly, we have to tra-

verse all the hull portions that the algorithm points to, Eind the time to compute a sin-

gle face fj becomes 0(m, log"^77i, 4- fc_,), where kj is the number of edges in f-j.
There-

fore, the total time spent in computing the faces containing the points of P, is at most

O (m^ log"^ m^ + n log n + ^p ^p^ kj
J

. But in the worst case J2p eP, ^j could be as large as

0(77z,n,), e.g. when all of the points lie in the same face, which happens to be bounded

by all the lines of C. This bound is too large for our purposes, which means that we

cannot afford to output the same face too many times. We circumvent this problem by

modifying the above algorithm as follows. Suppose we have already computed the faces

containing pi, ... ,Pj of P,, cind we axe about to compute the face fj+i containing Pj+i.

Before computing this face we first check whether pj+i lies in any of the faces computed so

far; we compute fj+i , as described above, only if it is indeed a new face. Since each face

of A{C) is a convex polygon, we can easily test p_,+i for containment in each of the already

computed faces of A{C) in O(logn) time, so the total time needed to decide whether fj+i

should be computed is at most 0{j\ogn). Thus, the total time required to computi^ fhe
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collection S of the desired faces is

r(m..n) = ^0(m,log3n+jlogn) + 0(^ |/j|) + O(nlogn)

- 0{m: log' n + nlogn) + 0{Y,\fA)

Edelsbrunner and Welzl [EWb] (see also [Ca]) have proved that the complexity of 7n distinct

faces in an arrangement of n lines is at most Oimy/n). Therefore

T{m,.n) = 0(mf log^n + nlogn) + 0(m,v/n).

Since m, < [y] , summing over all P,"s we obtain

* /m^ m \
T(m,n) = ^ ^

(
~2~ ^°S^ n + n log n + — -y/n

j

Choosing i —
m log n

~7^

= O { — log n + nHogn + my/n

we obtain T{m, n) — O fm-v/n log^ n + nlognj.

Remark 4.2: We believe that using, in the above procedure, the algorithm of [EGH*]

of merging the convex hulls to obtain the explicit face representation is an overkill, and a

simpler, more naive solution should exist. But at present we do not know how to simplify

the algorithm.

Figure 7: Zone of a triangle A^

Now we describe the main algorithm. As in the previous section, we partition the plane

into M = 0(r'^) triangles Aj, ... , Am each of which meets at most O(^) lines of £. Let

P, (resp. £,) denote the set of points of P (resp. Hnes of C) contained in (resp. meeting)

A,, and let /,(p) denote the face of A{C,) containing a point p. The zone of A, in A{C,) is

defined as the collection of the face portions / n A,, for all faces f e A{C,), that intersect
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the boundary of A, (see figure 7). Clarkson et al. [CEGSW] have observed that the total

number of edges in the zone of A, is O(^) (see also [CGL] and [EOS], where a zone is

defined with respect to a half plane). If a face /,(p) is fully contained in the interior of A,.

then f,{p) = f{p). Otherwise if f,(p) intersects the boundary of A,, then it is a face of the

zone of A,. Moreover, if a face / € A{C) does not lie in the interior of a triangle A,, it

is split into two or more pieces, each being a face in the zone of some triangle. Also, such

a face / intersects a triangle A, if and only if / is a face in the zone of A,. Thus, all the

faces in A{C) containing the points of P can be obtained by computing, for every A,, (i)

the faces of A{Ci) that contain the points of P,, and (ii) the zone of A,. The faces of AiC)

(containing points of P) that are split among the zones, can be easily glued together by

matching their edges that lie on triangle edges.

Edelsbrunner and Guibas [EG] have given an O(nlogn) algorithm to compute a zone

with respect to a half-plane in an arrangement of n lines. The same algorithm can be

applied to calculate the zone of each A,. As for computing the faces that lies in the

interior of A,, we use the simplified algorithm, given as above. Thus, the total time spent

in processing A, is at most 0{m, y/fT, \og^ n, + n, logn,). Finally, the total time spent in

merging the zones is 0(nr log n) because zones of two different triangles do not intersect,

and each zone has at most O(-) edges. Hence the total time T{m,n) spent in computing

m distinct faces in an arrangement of n lines in the plane is (provided m < n^)

M
T{m,n) = y^ O (m,v^log^ n, + n, log n,j + 0(nr log n) +

1=1

0{nr log n log"" r)

O 1 J— log^ n^m, + nr log n + 0{nr log n log'^ r)

n
(because n, < — and M = 0(r ))

m-^/n
2= O

(

—j=- log n + nr log n log"" r

J^ i rT,2/3 1^^2/3,

because > m, = m. For r = max < —; t—tt , 2 >, the above bound becomes^ |„l/3 1og2-/3^
J:= 1

T{m,n) = O L2/V/3log5/3„iog-/3^ + „logn^ .

Combining this with the trivial bound 0(m log n), for m > n^, we obtain

Theorem 4.3 Given a set of n lines in the plane, we can compute the faces of its arrange-

ment that contain m given points in time 0{m^^'^n^^^\og^^'^ nlog'^^'^ -^ + (m -f- n)logn).

D
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5 Computing Many Faces in Arrangements of Seg-

ments

Consider the following problem:

Given a set G = {ei, ... ,e„} of n segments and a set P = {pi, . . . ,pm] of m
points, compute the faces of A{Q) containing the points of P.

Aronov et al. [AEGS] have shown that the combinatorial complexity of m distinct faces

in an arrangement of n segments is bounded by

Edelsbrunner et al. [EGSh] have given a randomized algorithm to compute m distinct

faces in an arrangement of n segments whose expected running time is 0('m'^^^~^n^^'^'^^^ +
nQ(n) log m log^ n), for any 6 > 0. Our algorithm for computing many faces in an arrange-

ment of lines cannot be easily extended to the case of segments, so we present an alternative

technique that proceeds by applying the partitioning algorithm in the dual plane rather

than in the primal. Our algorithm is closely related to the proof of the combinatorial

bound given in [AEGS]. Again we assume that m < n^ for otherwise we can compute the

faces in O(mlogn) time by constructing the entire arrangement A{Q).

Let I denote the line containing the segment e of ^. Dualize each line £ to a point

f*, and each point p of P to a line p*; this yields a set P* of m lines, and a set C* of n

points in the dual plane. Partition the dual plane into t = O(r^) triangles A'j, . . . , A'^ so

that no triangle meets more than O(^) lines of P*. By Theorem 1.1, this can be done

in 0(mr log m log'^ r) time. If a triangle A^ contains n, > ^ points of £*, split it further

into [^^1 triangles, none of which contains more than ^ points. Clearly, the distribution

of the points of £* among the triangles, and the further partitioning of the triangles can

be done in 0(n log n) time. Let Ai, ... , Aa/ denote the set of resulting triangles; we still

have M = 0{r'^). Let C* denote the set of points contained in A,, and P* the set of lines

meeting A,. Let ^, denote the set of segments corresponding to the points £*. If a line p*

does not meet A,, then pj lies either above all lines containing the segments of Qi or below

all such lines, which implies that pj hes in the unbounded face of A{Q,). Hence, for each

subcollection Q,, it suffices to compute the unbounded face of A{Q,) and the faces that

contain the points of P,. As a matter of fact, we compute the entire arrangement A{Q,)

in time O(^), and select the desired faces from it. Let /,(p) denote the face of A{G,)

containing the point p. Note that the face f{p) of AiO) containing p is the connected

component of n,=i /.(p) containing p. Therefore for each p 6 P,, we have to "merge", i.e.

compute the connected component containing p of the intersection of, all M corresponding

faces.
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Recall that our algorithm [Aga] first computes r approximate levels, which are disjoint

polygonal chains with a total of 0{r^) vertices, and then triangulates each "corridor"

lying between two adjacent polygonal chains. We construct a binary tree T of height

H = O(logr) whose leaves correspond to these triangles and whose root corresponding to

the enclosing rectangle R (see [AEGS]). We first construct a binary tree Tc as described

in [AEGS], for each corridor C on the set of triangles lying in C so that the preorder

traversal of Tc visits the leaves (i.e. the triangles in C) in the order in which they appear

along C from left to right (see figure 8). T is then constructed with the trees Tc as its

leaves, in a similar manner.

Figure 8: Tc = Ti and T

Each node u of T is associated with a simply connected region Vy, which is the union of

the regions associated with the leaves of the subtree T oiT rooted at v (the construction

of T implies that each V-u is simply connected). For each node v of T, let ^t, = [J Q^ and
A,CP„

Pv = U ^'' ^^^ "" ~ l^^l ^^^ "^^ ~ \Pv\- Observe that any point p E P — P^ lies either

A,CV„

above all the Hnes containing the segments of Q^ or below all these lines, and therefore eJI

these points lie in the unbounded face of A{Qy). Let w and z denote the children of the

interior node v. It is easily seen that P^ = P^\J P^. For every node v of T, we compute
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the unbounded face of A{Qv) and the faces containing the points of P^,. Let Fy denote

the set of these faces and Ry denote the total number of edges in the faces of F,. Note

that the face fy{p) of A[Qy) is the connected component of fu,(p) H f,(p) that contains the

point p, where f^,(p) (resp. /,(p)) is the face of >^(^^,) (resp. A{Gz)) containing the point

p. Thus if we have already computed F^. and F, , then Fy can be computed by applying

the "red-blue merge" described in [EGSh]. Let My denote the time spent in merging F^

and Fj. It follows from the analysis of [EGSh] that

My = 0({Ry + my + nya{ny))\ogny). (5.1)

Therefore, the total time M{m,n) spent in merging the faces is

M{m,n) = ^ 0((i?,. + m^, + n^a(n„)) log n^)

H
= Y. H 0{{Ry + my + nya{ny))\ogny} (5.2)

t=l h.{v)=i

where h{v) is the height of v. But it has been proved in [EGSh] that

Ry < R^, + R, + 4my + 6ny (5.3)

Let Uy (resp. 2y) denote the set of leaves (resp. interior nodes) in the subtree Ty. If h{v)

= i, then by (5.3)

Rv < ^ i?^ + 4 ^ m, + 0{ny i)

where the last term follows from the fact that Xlx'^r, over all nodes at the same level of

Ty, is Uy, and the height of v is i. Let ky — \Uy\ denote the number of leaves of Ty. As

shown in [AEGS], the special way in which T was constructed guarantees that

ckyTn
my < ^^ + 1, (5.4)

r

where c is some constant > 0. Moreover, for each leaf u of T, |n„| == O(^). Therefore R^
= 0(^), and

which implies that

Mim.n) = J:j:0((^-4-+E— + Ma{n) + r))\ogn).

It can be easily proved that

Y.^^ = 0{r\ ^ n, = n and ^ Y.^^ = 0{x?).
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Therefore

Mim,n) = ^ Of f— + zmr + n(a(n) + z)j log n

= oil— log r + nain) log r + ( n + mr) log'^ r
|
log n

j

,

because H = O(logr).

Now going back to the original problem, we spent 0(mr log m log"^ r) time in parti-

tioning the plane into M triangles, and O(^) time in constructing A{Q,) for each A, (cf.

[EOS]). Thus, the total time T(m,n) spent in computing m distinct faces of an arrange-

ment of n segments in the plane is at most

M
T(m,n) = ^O — + 0(mr log mlog'^r) +

O I — log r + na(n) log r + {n + mr) log r log n

= O \
[
— + mr log*^ r + na{n) + n log r logn log

Hence, by choosing r = max
n 2/3

-, 2 >, we obtain
,^mi/3 1og<'^-^'/^^

J

r(m,n) = ofm^/V/3 log nlog<^-+^)/3-^ + n log n log^^ + m logn^
\ vm y/m J

= oL2/V/3lognlog'2-+')/3-^ + nlog^n + mlogn]

Theorem 5.1 One can compute the faces of an arrangement of n line segments, which

contain m given points, m time O I m^'^n^^^ log n log*^'^''"^^^^' —== -\- n log'' n + m log n ] .

Remark 5.2: If we partition A^ into
/W^log'/^r

triangles (instead of
n.r

n
), each

r2u;/3-l{2/3

then the running time of the algorithm caia be improved sHghtly to

O L^/^n^/^ log n log-/3+>
;;^ + " log' n + m log n] .
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6 Counting Segment Intersections

In this section we consider the foUowing problem:

Given a set ^ = {ei, . . . , e„} of n line segments in the plane, we wish to count

the number of intersection points between them.

This is a variant of one of the most widely studied problems in computational geometry,

namely that of reporting all intersections (cf. [BO], [Br], [Cha], [CE]). The recent algorithm

of Chazelle and Edelsbrunner [CE] reports all k intersection points in time 0(n log n +
k) using 0(n + k) space. Although it has optimal running time, it requires quadratic

working storage in the worst case. Guibas et al. [GOSb] gave an 0{n'^^'^'^^ + k) randomized

algorithm, for any 6 > 0, using only 0{n) working storage (see also [Clb], [Mu]). The only

algorithms known for counting the intersection points in time that does not depend on

k. are by Chazelle [Cha] and by Guibas et al. [GOSb]. The latter algorithm is faster but

randomized, and has expected running time 0{n'^^'^'^^) for any 6 > 0. We modify Guibas

et al.'s algorithm to give a slightly faster and deterministic algorithm, although the space

requirement goes up roughly to n/''''. Their algorithm relies on a procedure that, for a given

triangle A, counts the number of intersection points contained in A in 0{{m^ + n)logn)

time, where n is the number of segments meeting A, and m < n is the number of segments

having at least one of their endpoints inside A. For the sake of completeness, we briefly

overview this procedure because we will also make use of it.

Partition the segments of Q meeting A into two subsets:

(i) Qi: "long" segments of Q whose endpoints do not lie inside A.

(ii) Q,: "short" segments of Q having at least one endpoint inside A.

There are three types of intersections to be counted:

"Short-short" intersections: intersections between the segments of Q^.

"Long-long" intersections: intersections between the segments of Qi.

•

•

• "Long-short" intersections: intersections between a segment of Qi and cinother seg-

ment of Q,.

Counting short-short intersections: The short-short intersections can be counted in

O(m^) time by testing aJl pairs of segments of Q,.

Counting long-long intersections: For a segment e e Qi, we refer to the intersection

points of dA and Qi as endpoints of e. Let 5 denote the sequence of endpoints of segments

in Qi sorted along 5A in counter-clockwise direction, starting from one of its vertices. Let
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Figure 9: Long segment e with endpoints a, b

a,b e S he the endpoints of a segment e G Qi. It is easily seen that another long segment

e' intersects e inside A if and only if exactly one endpoint of e' lies between a and 6 in S

(see figure 9). Therefore, to count all "long-long" intersections we scan 5 once and do the

following operations at each point of 5. If we encounter a segment e for the first time, we

insert e on top of a stack, maintained as a binary tree B, and if we encounter e for the

second time, we remove it from B, but before doing so we count the number of segments in

the tree that were inserted after e. It can be easily verified that no intersection is counted

more than once. Since each operation takes at most 0(log n) time, the total time spent in

counting the number of long-long intersections is 0(n log n).

Counting long-short intersections: For every segment e 6 Q,, let e denote efl A; and

Q^ = {e\e € Ga}- Let Qi denote the lines containing the segments of Qt. It clearly suffices

to count, for each i ^ Qt, the number of intersections between £ and Q,.

Dualize each segment e G ^j to a double wedge e*, and construct the arrangement Ti of

these double wedges. For any double wedge e*, each face / of "H is either contained in e*

or does not intersect e*. The weight of a face / is the number of double wedges containing

/; the weights of all faces of Ti. can be easily determined while constructing" H.

A line £ G Qi intersects a segment e £ Q, \i and only if the point i* lies in the double

wedge e*. Thus, for every segment e in Qi, the number of segments in Q, intersecting e is

equal to the weight of the face in Ti. containing the point £*. Therefore, we determine the

number of segments intersecting £ by locating i* in Ti.. Computing Ti. and preprocessing it

for fa^t point location queries can be done in time 0[m^) ([EOS], [EGSt]), so all long-short

intersections can be computed in time 0(m^ + nXogn).

The above discussion implies that one can count all intersection points of Q contained

in A in 0(m'^ + n log n) time. The time complexity of the above procedure can be improved

to 0(m\/n log n + n log n) by partitioning Q, into ["
.

^
] subsets of size at most \Jn lug n

V " log n

each, and counting the number of intersection points between each of the subsets and Qi.
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Next we describe the main algorithm. Partition the plane into A/ = 0{r'^) triangles

Ai Av/, each meeting at most O(^) lines containing the segments of Q. Using the

algorithm described above, we count the number of intersections contained in each A,, for

I < M, and add up the results. If m, denotes the number of endpoints lying inside A,,

the time spent in counting intersections within A, is 0{m,J^ log^''^ '^ + f log '^)- Using the

same analysis as in previous sections, the total time of the algorithm is

^ O (
777, w — • log^''^ n

j
+ O (nr log n log'^ r)

.=1 ^
^

= o ( —^ log^'^ n ^ nv log n \o^ r 1

because > m, < 2n. Hence, by choosing r = ,„ ^-.,„— . we obtain
^ ^

log""^+''/^77

Theorem 6.1 Given a set of n line segments, their intersection points can be counted in
/ „4/3 \

time 0{n'^^^\og''^+^^^^n) and O I

i^:;^r[jj^)
»pace.

Remark 6.2: We can combine this algorithm with the algorithm of [CE] that computes

the number of intersections k in time O(nlogn + k). That is, we first run the algorithm

of [CE] and stop it as soon as the number of intersections exceeds n''/~^log''^"'"^'^^n. Then
we use our algorithm. We thus have

Corollary 6.3 One can count the number of k intersections between n line segments in

hmeO(min{nlogn + A:,n''/3log("+2)/3^|^ ^nd space o(miJn + k, ,f \,, iV
\ I log*^'^"'"^''^77J/

D

7 Counting and Reporting Red-blue Intersections

Next, we consider a variant of the segment intersection problem:

Given a set Tr of Ur "red" line segments and another set Tb of rib "blue" line

segments, count or report all intersections between T^ and Tb.

Let n = rir + rib. Mairson and Stolfi [MS] gave an O(nlogn + A') algorithm to report

all K red-blue intersections, when red-red and blue-blue intersections are not present. The
algorithm of Chazelle and Edelsbrunner [CE] for reporting segment intersections can also

be appHed to report all red-blue intersections in this special case. However, in the general
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case these algorithms cannot avoid encountering red-red and blue-blue intersections. For

the general case, Agarwal and Sharir [AS] presented an Oiin^-yTrh + rtty/n^ + K)\ogn)

algorithm to report all A' red-blue intersections. They showed that a restricted version

of this problem, in which one only wants to detect a red-blue intersection, can be solved

in 0(n^/^+'^) (randomized expected) time, for any (5 > 0, by reducing it to the problem

of computing at most 2n faces in A{Tr) and in A{Tb). As for the counting problem,

in the absence of monochromatic intersections, Chazelle et al. [CEGSa] have developed

an 0(n log n) algorithm to count all red-blue intersections (see also [CEGSb]). In this

section we present an 0(n''/^ log''^''"^'^^n) algorithm to count all red-blue intersections in

the general case, using roughly n"*^^ space. Our algorithm actually computes, for every red

segment e, the number of blue segments intersecting e. The algorithm can be modified to

report all A' red-blue intersections in time 0(n''/^ log*'*'"'"^'/^ n -|- A').

As in the previous section, we first consider a restricted version of the problem. Let Tr

and Ff, be two sets of segments as defined above, all meeting the interior of a triangle A,

such that m of these segments contain at least one endpoint inside A; we wish to count the

number of red-blue intersections lying inside A. We describe an 0((m^+n) log n) algorithm

that, for every red segment e, counts the number of blue segments intersecting e, and can

be modified to report all red-blue intersections with 0(1) overhead per intersection. The

algorithm proceeds as follows:

Partition the segments of F^ and Fj, into four subsets:

(i) A: "long" segments in Tr whose endpoints do not lie inside A; let |.4| = a.

(ii) B: "short" segments in Fr having at least one endpoint inside A; let \B\ = b.

(iii) C: "long" segments in F;, whose endpoints do not lie inside A; let \C\ — c.

(iv) D: "short" segments in Ffe having at least one endpoint inside A; let \D\ — d.

Note that a + c = n — m and b + d = m. We have to count (or report) four types of

red-blue intersections

• Intersections between A and C,

• intersections between A and D,

• intersections between B and C, and

• intersections between B and D.

Our approach is similar to the one used by Guibas et aJ. [GOSb] for counting segment

intersections, as described in the previous section.

Intersections between A and C: For a segment e £ A U C , its intersection points

with dA are called the endpoints of e. Let S denote the set of endpoints of segments in
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(a)

Figure 10: Intersections between A and C

A U C sorted along 5A in clockwise direction, starting from one of its vertices v. Let

a, 6 G 5 be the endpoints of a red segment e with a appearing before b in S. Similarly, let

a', 6' be the endpoints of a blue segment e'. It is easily seen that e intersects e' if a, 6, a'

and b' appear in one of the following two orders:

(i) a, a', b and b' (see figure 10a), or

(ii) a', a, 6' and 6 (see figure lOb).

For each red segment e, we show how to count red-blue intersections along e. Scan the

boundary of A in clockwise direction. When we encounter a blue segment for the first time,

we insert it on top of a stack, maintained as a binaxy tree B, and when it is encountered

for the second time, we delete it from B. On the other hand, when we encounter a red

segment e for the first time, we do nothing, but when we encounter it for the second time,

we count the number of (blue) segments in the stack that were inserted before encountering

the first endpoint of e. This gives the number of type (i) intersections between e and C.

Type (ii) red-blue intersections can be counted in a symmetric way by scanning dA in

counter-clockwise direction.

We leave it for the reader to verify that this algorithm can be extended to report all

red-blue intersections between A and C.

For each segment e G -4, we spend O(logn) time, therefore the total time spent in

counting (resp. reporting all Kac) such red-blue intersections is at most 0{{a+ c) log(a-fc))

= 0{n\ogn) (resp. 0(n log n + Kac))-

Intersections between A and D: For every e G D, let e denote e n A; and let D =
{e\e e D]. Let A denote the set of lines containing the segments of A, and let .4* denote
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the set of points dual to the hnes of A. Let £ denote the set of hnes dual to the endpoints

of the segments in I). Construct the arrangement A[C). For each £ € .4. we count the

number of intersections between £ and D by locating the point t m A(C). as in Section 6.

The total time spent in counting these intersections is easily seen to be 0[m'^ + nlogn).

As for reporting the intersections between A and D contained in A, let !i'(/) denote the

set of double wedges dual to the segments of D containing a face f oi A{C). If two faces

/i and /2 share an edge 7. contained in a line £ G £, then 8^ = 4'{f\ ) ® ^ifi) is the set of

segments having dual of £ as an endpoint. Therefore by first constructing the arrangement

A{C), and then locating each point of A' in A{C), we can report all Kad intersections

between .4 and D contained in A. in time (m^ + nlogn -f- E-> <^-v + A'.4d)- Thus, it suffices

to bound YleeA{£)^e- Suppose the segments of D have t < 2d distinct endpoints and u,

segments are incident to the z"* endpoint. Obviously, Yi\=i ^« = 2<i and, for each line £ G £,

there are t edges of A{C) contained in i, therefore

E |.5e| = X:^^. < 2cf^ (7.1)

e€A{C) t=l

Hence, the total time spent is 0{n log n + m'^ + Kad)-

Intersections between B and C: If we just want to report or count the total number

of intersections between B and C contained in A, we can use the same procedure as in the

previous case. But if we want to count the number of red-blue intersections for each red

segment separately, we need a different technique.

Let B = {enA|e G B}, and let B* denote the set of double wedges dual to the segments

in B. Let C denote the set of lines containing the segments of C, and C the set of points

dual to the lines in C. The number of intersections between a segment e E B and C is

equal to the number of points of C* in the double wedge e*. Therefore, for every double

wedge, we want to find the number of points of C* lying in it. This can be done in time

0(6^ -I- clog(6 4- c)) = 0{m^ + nlogn), using the algorithm described in Edelsbrunner et

al. [EGH*].

Intersections between B and D: For every segment e € B, we caji determine the

segments of D intersecting it by testing all such pairs of segments. This takes 0{m'^) time.

Thus for every segment in Fr, we can count the number of blue segments intersecting

it inside A in time 0{m? -{ nlogn), and we can report all red-blue intersections inside

A within the Scime time plus 0(1) overhead per intersection. The running time can be

improved to 0(m-v/n log^'^ n -\- nlogn) by partitioning the collection of short segments

(that \s B\J D) into |"
,

"^
] subsets of size yjn log n each, and then repeating the above

\/nIogn

procedure for each subset and the entire A U C

.

Going back to the original problem, we partition the plane into O(r^) triangles, each

meeting at most O(^) lines containing the segments of F^ U Fj. Using the algorithm

described above, count (resp. or more generally report all A',) red-blue intersections within
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the i"' triangle m O(m,^log''' ^ + Mog ^) (resp. 0{m, ^log'^' ^ + ^ log ^ + A',)) time,

where m, is the number of segment endpoints falling inside the ?'"" triangle. Following the

same analysis as in Section 6, we obtain

Theorem 7.1 Given a set of n^ "Ted" line segments and another set of Uf, "blue" line

segments, we can count, for each red segment, the number of blue segments intersecting

it in overall time 0(n'^^^ log'"""^^'^^ n) using O I

-

—

.^^_^_^, ,3 space, where n - rir + rib.

Moreover, we can report all K red-blue intersections in time 0(n'*''' log''^"'" ''^n + A').

D

Remark 7.2:

(i) Our algorithm uses roughly n'^^^ space only for partitioning the plane into (9(r^)

triangles; all other stages of the algorithm require 0(n) space. If we choose r = 0(1)

and solve the problem recursively as in [GOSb], we can reduce the space complexity

to 0{n)^ but the running time increases to 0{n'^^^'^^), for any 6 > (which can be

made as small as possible as we wish by choosing r sufficiently large).

(ii) If we allow randomization, then using the random sampling technique of [Cla] or of

[HW], we can count all red-blue intersections in 0{n'^^^ log n) expected time, and can

report all K red-blue intersections in expected time 0(n'*/'' log n + A'). We leave it

for the reader to fill in the missing details.

(iii) Note that if Fr is a set of hues, then we have to consider only the first two cases,

because B = %.

8 Batched Implicit Point Location

The planar point location problem is a well studied problem in computational geometry
[Ki], [EGSt], [STa]. In this problem one is to preprocess a given planar subdivision so that,

for a query point, the face containing p can be computed quickly. Guibas et al. [GOSa] have
considered a generalization of this problem, in which the map is defined as the arrangement
(i.e. overlay) of n polygonal objects of some simple shape, and we want to compute certain

information for the query points related to their arrangement (for example, to determine

which query points lie in the union of these polygons). For simplicity we break the given

polygonal objects into a collection of fine segments, and consider the following formal

statement of the problem:

We are given a collection ^ = {ci, . . . , e„} of n segments, and with each seg-

ment e we associate a function
(f>^ defined on the entire plane, which assumes
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values in some associative and commutative semigroup S (denote its operation

by +), and let $(j) = J2eeQ <^e(-r)- Given a set P = {pi, ... .Pm} of m points,

compute <5(pi), . . . ,$(pm) efficiently.

We assume that <pe and $ satisfy the following conditions:

(i) The function d>e has constant complexity, that is, we can partition the plane into

0(1) convex regions so that within each region (f)^ is constant. This also implies that,

for any given point x, 4>ei^) can be computed in 0(1) time.

(ii) Any two values in S can be added in 0(1) time.

(iii) Given a set ^ of n segments in the pleine, we can preprocess Q in time O(nlog''n),

for some k > 0, into a linear size data structure so that, for a query point x lying

either above all the lines containing the segments of Q, or below all these lines, $(x)

can be calculated in O(logn) time.

We will see that several natural problems, including the containment problem men-

tioned above, can be ca^t into this abstract framework. Note that we consider here the

batched version of the problem, in which all query points are known in advance. In another

paper [Aga] we consider the preprocessing-and-query version of the problem and solve it

using different techniques based on spanning trees with low stabbing number.

A naive approach to solving this problem is to construct the arrangement A{Q) (more

precisely, the arrangement obtained by overlapping all the convex subdivisions associated

with each of the functions 4)^)' so that the value of $ is constant within each resulting

face. Now $(pi), ... ,^{pm) can be easily computed in 0(m log n) time by locating the

points of P in the above planar map. If m > n'^ then this is the method of choice,

and it runs in overall 0(m log n) time, but if m < n^ this procedure takes Q(n^) time

in the worst case, so the goal is to come up with a subquadratic algorithm. Guibas

et al. [GOSa] have indeed given a randomized algorithm whose expected running time

is 0{m'^^^~^n'^^^'^^ + mlogn + nlog'^"'"' n), for any 6 > 0. Our (deterministic) algorithm

improves their result and works as follows.

Let C denote the set of lines contEiining the segments of Q. Let £* (resp. P*) denote the

set of points (resp. lines) dual to the lines (resp. points) of £ (resp. P). Partition the dual

plane, in time 0(mr log mlog'^ r), into t = 0{r'^) triangles A[, ... , A'j, each meeting at

most O(^) lines of P*. If a triangle contains n, > ^ points of £*, then partition it further

into [^^1 triangles, none of which contains more than ^ points. Let Ai, ... , Am denote

the resulting triangles; we have M = Oir"^). Let P* denote the set of lines passing through

A,, and let C* denote the set of points contained in A,; thus \P'\ = 0( — ), |£'| < -r- Let

$, = Y^e€G, ^e- For each p G P,, compute $,(p) by constructing the entire arrangement

A{Qi), as discussed above (see also [GOSa]). The total time spent in computing $,(p) for

all p G P, is 0(^ + 7logn) [EOS], [EGSt].
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Next, we show how to add the values computed within each triangle to calculate ^(p)

= Y.1 ^lip)- ^^'^ ^s6 3- procedure similar to the one used in Section 5 for computing many

faces in an arrangement of segments. In particular we construct a binary tree T with the

properties defined in Section 5. For each node v of T, let Qy, P^ be as defined in Section 5,

let m„ = |P„|, Uy = \Qv\, and let $,, = Yleeg,. <Pe- At each node v of T, the goal is to

compute $1, for all p £ Py. At the end of this process, we will have obtained, at the root

u of T, the value of $„ = $ for all p E Pu = P- We calculate $„ in a bottom-up fashion,

starting at the leaves of T, as described above.

Let V be an internal node of T having children U' and z. We preprocess ^^, Q, to

obtain data-structures V^,, V, of linear size so that, for any point lying either above all

the Unes containing the segments of Q^, (resp. Q^) , or below all these hues, ^y, (resp.

$j) can be computed in logarithmic time. Now for each p € Py, ^y{,p) = ^w{p) + ^z{p)-

If p G Pyji we already have computed ^yj{p) at w. Otherwise p lies either above ail lines

containing the segments of Qyj, or below all these lines, so we can use T>yj to compute $u.,(p)

in 0(lognu,.) time. Similar actions are taken to compute $j(p). Thus we can obtain ^y for

all points in Py in time 0{my\ogny). By the third property of cf);,, Vy,, can be constructed

in 0{nyj log*^ n^,) time, and similarly for V^. Hence, the total time spent in computing ^y

over all nodes v of T, including the initial partitioning of the dual plane, is

r(m,n) — ^ Oirriylogny + Uylog^ Uy) +- (9( mr log m log"^ r)

Ti} m

= X] X! 0(m^ log n^ -I- n^ log*" n^,) -t- of — -I- mr log nlog"^ r

.= 1 h(v)= %

where E = O(log r) is the height of T and h(y) is the height of a node v of T. As mentioned

in Section 5, it was shown in [AEGS] that

ckyTn
ruy < -I- 1,

r

where c is some constant > and ky is the number of leaves in the subtree of T rooted at

V. Moreover, we eirgued in Section 5 that

y^ ky = 0{r^) and ^ riy = n.

Therefore

TJ

T{m,n) - ^0 [r'^ —\ogn + n\og^ n\ +0\^ -\-rnr lognlog'^ r\

= O imr log n log'^ r + n log* n log r -f — 1
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Bv choosinff r = max < t-r T{ >~ ) • ^^ obtain
^ \mV3 1ogi/3^1og-/3^

J

Theorem 8.1 Given a collection Q of n segments, a function d)^ associated with each e ^ Q

with the properties listed above, and a set P of m points, we can compute ^e^g4>eip)' for

each p E P, m time

Oim'^'^n'^'^ log^/^ m log^"'^^ -^ + n log'' n log —= + m log n).
y/m \/m

D

Remark 8.2:

(i) In several special cases it is possible to obtain Vy, in 0{ny) time, by merging V.^ and

Pj. In such cases the second term of the above bound reduces to 0(n log n).

(ii) As mentioned above, we have recently obtained in [Agb] an algorithm that prepro-

cesses Q, in time 0(n"'/^ log"^"*"^ n), into a data structure of size O(nlog^n) so that,

given a point p, $(p) can be computed in 0{\/n\o^ n) time. (The query time can

be reduced to 0{\/n\ogn) in several special cases.)

(iii) As in Section 5 the running time can be improved to

0{m"^n'"^ log2/3 ^ l^g^/3 " + „ log'' n log -^ 4- m log n)

by partitioning A( into

m ^Jm

mJT log ' n

— log^'^ r points of £*, and by choosing r = ma:x

triangles none of which contains more than

n2/3

l/3 1ogl/3„log^/3^m

Various applications of the batched implicit point location problem have been discussed

in [GOSa]. The running time of all these applications can be improved by using the

algorithm provided in Theorem 8.1. We briefly describe a couple of these application, and

refer to [GOSa] for more details.

8.1 Polygon containment problem — batched version

Consider the following problem:

Given a set T oin (possibly intersecting) triangles and a set Pofm points, for

every point p of P, count the number of triangles in T contsdning p, or more

generally for each point p, report all triangles containing p.
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We review the solution technique of [GOSa]. Let Q be the set of the edges of triangles in

T. and let C be the set of lines containing the segments of Q. For each edge e of a triangle

A. let B(e) denote the semi-infinite trapezoidal strip lying directly below e. Define a

function pe in the plane so that (pe{p) = if p lies outside B{e), 4>e{p) == 1 if p is in B[e)

and A lies below the line containing e, otherwise 0e(p) = -1-

It is easily seen that, for any point p, <5(p) gives the number of triangles containing p,

and (i)e satisfies the properties (i)-(ii). As for property (iii), if a point p lies above all lines

of £, then $(p) = 0. by definition. If p lies below all lines of £, then we do the following.

Let e denote the x-projection of an edge e of a triangle. It is easily checked that

where e-, is the non-zero value of <Pe at p. Note that the sum of the right hand side does

not change between two consecutive endpoints of the projected segments, and that the

value of $ over each interval can be computed in overall 0{n log n) time, by scanning these

projected segments from left to right. Hence, we can preprocess T, in time 0(n log n), into

a data structure P so that, for a point p lying below all lines of £, $(p) can be computed in

O(logn) time. Moreover, for a node v in T, 'Dy can be obtained in 0{ni,) time by merging

Pu,, and Pj, where u', z are the children of v. Hence, Theorem 8.1 and the remark following

it imply that

Corollary 8.3 Given a set T of n triangles and a set P of m points, we can compute, for

each point p ^ P , the number of triangles m T containing p in time

0[m"^n''l^ log^l^ m log^"/^^ -f (m + n) log n).

D

8.2 Implicit hidden surface removal — batched version

The next application of the implicit point location problem is the following version of

hidden surface removal problem:

Given a collection of objects in 3-dimensional space, and a viewing point a, we
wish to calculate the scene obtained by viewing these objects from a.

The hidden surface removaJ problem has been extensively studied by many researchers

(see e.g. [De], [MK]), because of its applications in graphics and other areas. For the sake

of simplicity let us restrict our attention to polyhedral objects, whose boundary T is a

collection {Ai, . . . , A„} of n non-intersecting triangles. In the case of implicit hidden

surface removal problem, we do not want to compute the scene explicitly; instead we
wish to determine the objects seen at given pixels [CS], [GOSa]. In this subsection, we
consider the following special case of the implicit hidden surface removal problem. Let T
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= {Ai, .... An} be a collection of n non-intersecting horizontal triangles in IR^ such that

A, lies in the plane z = c,. where ci < C2 < • • • < Cn are some fixed heights. Let P =

{pi p^] be a set of m points lying in a horizontal plane below all triangles of T. The

problem is to determine, for each point p e P. the lowest triangle A, hit by the vertical

line passing through p.

We review the techniques used by Guibas et al. [GOSa]. A point p G P is said to

be blocked by T, if the vertical hne from p intersects at least one triangle A, G T. First

consider the following problem: Given a set T of n triangles and a set P of m points,

determine which points of P are blocked by A. This problem can be solved by applying our

implicit point location algorithm to P and the xy-projection of the triangles in T. Hence,

we can compute the blocked points in 0(m^/^n'/^ log^''^ m log^'^''^ -^ + (m + n)log n) time.

Going back to the original problem, if the number of the points or the number of the

triangles is < 1. then we solve the problem directly; otherwise we split T into two subsets

Ti, T2, so that Ti contains the lower half of the triangles Aj, . . . , A„/2 and T2 contains

the upper half of the triangles An/2+i5 • • • -An. Apply the blocking algorithm to P and

Ti. Let Pi C P be the subset of points blocked by Ti, and let P2 = P — P\- We recursively

compute the lowest triangle in Ti (resp. in T2) above each of the points in Pi (resp. P2).

Using the same analysis as in [GOSa], we can show that the total running time is

Hence, we can conclude

Theorem 8.4 Given an ordered collection T of n triangles m R^ and a set P of m points

lying below all of them, one can determine, in 0{rrT}^^n}^^\o^'^ m\o^'^'^ -j- + mlogn -(-

nlog n) time, the triangle seen from each point of P in upward vertical direction.

U

Remark 8.5:

(i) In fact this algorithm works for a more general case, where triangles in T have the

property that they cam be hnearly ordered so that if a vertical hne hits two triangles

A, and A^ with A, lying below Aj, then A, < A_,.

(ii) We can extend the above algorithm to the case, where the points of P do not lie

below all of the triangles in T. Now at each level of recursion, for each point p of

Pi, we also find the highest triangle Ap of Ti whose projection contains p. If Ap Hes

below p, then we remove p from Pi and add it to P2. Using the above algorithm we

can find Ap, for each p G Pi, in time

0{m'"^n'"'\og^l^mW-l^^+ mlogn + nlog' n).
\/m
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Therefore the overall running time is

0(7n^/^7^/^log^/^mlog^-^''^-^ + mlogn + nlog^n).

9 Approximate Half-plane Range Queries

The half-plane range query problem is defined as: Given a set S of n points in the plane,

preprocess it so that for any query line L we can quickly count the number of points in S

lying above (. In the dual setting, S becomes a set S* of n lines, £ becomes a point t* . and

the number of points lying above C is same as the level of £* in A{S*). Therefore, if we

allow 0{n^) space, the query can be obviously answered in time O(logn) by precomputing

AiS*) and locating i* in it. Chazelle and Welzl [CW] recently gave an algorithm that

answers a query in time 0(-y/n log n) using only 0{n) space. A result of Chazelle [Chb]

shows that if we restrict the space to be linear, the query takes at least Q(^/n) time in

the semigroup model (in particular subtraction is not allowed, see [Chb] for details), which

implies that we cannot hope for a much better algorithm if we want to count the exact

number of points. However, in several applications it suffices to count the number of points

approximately (one such example is described in [Mab] ). Therefore, in the dual setting, the

approximate half-plane range query problem is: Given a set 5* of n lines and a parameter

(not necessarily a constant) e > 0, preprocess it so that for any query point, we can quickly

compute an approximate level for it in ^(S*), namely a level that Hes within ±en from

the true level. It is easily seen that the problem can be reduced to an instance of point

location problem in an ^-approximate leveling of A{S*) (see also [EWa], [Maa]). Hence

by Theorem 1.1, we obtain

Theorem 9.1 Given a set of n points in the plane and a positive real number e < \ . we

can preprocess it m time 0{^\ognlog'^ ^), into a data structure of size 0{-), so that for

any query line i we can obtain, in O(logn) time, an approximate count of the number of

points m S lying above i, which deviates from the true number by at most ±en.

D

10 Computing Spanning Trees with Low Stabbing Num-
ber

Let S be a set of n points in R"^ and T a spanning tree on S whose edges are line segments.

The stabbing number a{T) of T is the maximum number of edges of T that can be crossed

by a hyperplane h. Chazelle and Welzl [CW] (see also [Web]) have proved that, for any

set of n points in IR
, there exists a spanning tree with stabbing number 0(n^~^/'^), and

that this bound is tight in the worst cjise. For a family T of trees, the stabbing number
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ct(T) is 5 if for each hyperplane h there is a tree T G T such that h intersects at most .^

edges of T.

Edelsbrunner et aL [EGH*] gave a randomized algorithm with expected running time

0(n^''Mog^ n) to compute a family T = {Ti Tfc} of ^' = O(logr?,) spanning trees with

the property that, for any line £, there exists at least one tree T, such that £ intersects

at most 0{y/n\og^ n) edges of T,. They also showed that a spanning tree on 5 with

stabbing number 0(\/n.) can be deterministically constructed in time 0{n^ log n). Recently

Matousek [Mab] has improved the running time of these algorithms. He has given a

randomized algorithm with expected running time 0(n''/^ log^ n) to construct a family of

O(logn) spanning trees with the above property; this algorithm can be converted into

a deterministic one with 0(n"/'* log^ n) running time. He has also given an O(n^^^logn)

deterministic algorithm (or a randomized algorithm with expected running time 0(n^''+*),

for any 6 > 0) to construct a single spanning tree with stabbing number 0(-\/n log n). His

algorithms actually compute spanning paths of S.

In this section we describe a deterministic algorithm for constructing a family T of

O(logn) spanning trees with a(T) = 0{^/n). The crux of Matousek's algorithms lies in

the following lemma.

Lemma 10.1 ([Mab]) Given a set S of n points in the plane, we can find a set C of 0{n)

lines with the property that, for any spanning path T on S , and for every line £, there is a

line C E C such that if i' intersects s edges of T , then i intersects at most s + 0{y/nlogn)

edges of T

.

a

Matousek describes aji 0(n^/'* log^ n) deterministic algorithm to compute this set of

lines. Using Theorem 1.1 we can strengthen Lemma 10.1 a^ follows:

Lemma 10.2 Given a set S of n points in the plane, we can deterministically construct a

set C of 0{n) lines in time 0(n^'^ log"*"*"* n) with the property that, for any spanning path

T on S , and for every line £, there is a line £' ^ C such that if £' intersects s edges of T

,

then i intersects at most s + 0{y/n) edges of T

.

Proof: Dualize the points of S; we obtain a set S* of n lines. By Theorem 1.1, choosing

r — y/n, we can partition the plane into 0{n) triangles in time 0{n^^^ log'^'''^ n), so that no

triangle meets more than 0{y/n) lines of S. Pick up a point i* from each triangle, let C*

denote the set of these points, and let C be the set of their dual lines in the primal plane.

Arguing as in [Mab], let ( be an axbitraxy line in the primal plane. By construction,

there exists a line i ^ C such that the segment e = (*(* does not cross more than 0{y/n)

lines of 5*. Going back to the primal plane, if an edge g of T intersects ( but not £, then

one endpoint of g must lie in the double wedge e* dual to e, but our construction implies

that e* contains at most 0{y/n) points of S. Thus, there are at most 0{\/n) edges of T
that intersect ( but not I, and the lemma follows.
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We construct a family of O(logn) spanning paths with low stabbing number only for

the lines in C. Although the basic approach is the same as in [Mab] or [EGH*], we need

some additional techniques to improve the running time. Here we briefly sketch the main

idea, and refer the reader to [Mab] or [EGH*] for more details.

Suppose we have constructed Ti. . . . ,7^-i. and have obtained a set £, C C such that

"^: = I'^ij < ^7?T (where m = |£| = 0(n)) and £, is "bad" for all paths constructed so far.

that is, a line in £, intersects every tree at more than C s/n edges, for some constant C to

be specified below. We show how to construct 7^ and £,+i. Initially C\ = C.

Figure 11: Spanning path 7[; connecting the endpoints of Sj

The spanning path T, is constructed in O(logn) phases. In the beginning of the j"*

phase we have a current collection Sj of vertex-disjoint paths on 5 (in the beginning of

the first phase the collection Si consists of all singleton paths on the points of S). Our

algorithm ensures that n., = |5j] < n •

(|) . If Uj < y/n, we connect the endpoints of

the paths in S_, to form a single spanning path on 5, and we are done (see figure 11).

Otherwise, if n_, > y/n, we proceed as follows. Choose r = Ci^nJ and partition the plane

into Hj/S triangles so that no triangle meets more than C2-^ lines of £,, for appropriate

constants ci,C2, which exist by Theorem 1.1. If a triangle contains endpoints of several

paths in S_,, we obtain a maximal matching of these endpoints and connect each pair of

matched points by an edge (see figure 12), thereby combining two paths in Sj into a new
path. To avoid creating cycles, we only choose one endpoint of each path of Sj. The
endpoints of the resulting paths form the set Sj+i. It can be easily proved that we add at

least ^ new edges to the current set of paths, which implies that Uj+i < 2nj

3

Lemma 10.3 There are at least ^ lines of C, that intersect T, tn < Cy/n edges, for some
constant C > 0.
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Figure 12: Maximal matching of endpoints within A,; bullets denote the selected endpoints of Sj

Proof: We bound the total number of intersection points between edges of 7^ and £,.

In the j"' phase we add at least rij — rij+i edges, and each edge intersects at most Cj-^

lines of £,. In the final phase we add at most ^/n edges, each crossed by at most m; lines.

Therefore the total number of intersections I between 7^ and £, is at most

O(logn)
^ * '

rrii

< H ("j - nj+i)c2—= + \/n -m,

O(logn)

O(logn) /9\ •^
< C2m,Vn X! ( i )

+ \/nm,
.=1 ^3

'9\J-1
(because "_, < n • (

-
j )

= ;= + \/nmi
1-72/3

= ((3 + \/6)c2 + l)-m.y^

Now it follows immediately that at least half of the lines in £, intersect % in at most Cyjn

edges, for C = (6 + 2\/6)c2 + 2.

n

Lemma 10.3 implies that at most half of the lines are "bad". For every line i G £,,

we count the number of intersections between i and 7^, using our red-blue intersection

algorithm given in Section 7. We pick up those lines of £, that intersect Tj at more than

C\/n points. The resulting set is £,+i.

Next we analyze the running time of our algorithm. We first bound the time to compute

£,, for i < k. Since m, < n and there axe only n edges in T,, it follows from Theorem 7.1
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that we can compute £, in 0(n'*/^ log*-^"*"^'/^ n) time. Moreover k = O(logn), so the total

time spent in computing the incidences between 7^ and £,. over all k phases, is at most

C'(n''/3log(-'+'>/'n).

As for the time spent in computing T,, we choose r = Ci,ynJ in the j"* phase, therefore

it requires

0(m,,yTT71ogm,Iog"'nj) = ^[^'^'[3) logm, log'" n
J

.

time. (It is easily checked that this also bounds the time needed to distribute the path

endpoints among the triangles, and to match them to obtain the new set of paths.) Hence

the total time spent in computing T, is at most

Y^ O lm,y/n i^j log miTog"^ n
I

= 0(m,v/n log m, log'" n).

O(logn) / .9s(j-l)/2

Summing over all ;. we obtain

K

y^ (m,>/n log m, log"^ n]
1=1

= X^O(m.v^log-+Sz)
1=1

= O(i:^v/^log--n)

m
(because m, < —— andm = 0{n))

Hence, we have

Theorem 10.4 Given a set S of n points in the plane, we can deterministically construct,

in time ©(n^/^-log"""*"^ n), a family T of k = O(logn) spanning paths on S with the property

that, for any line £, there exists a path T G T, such that £ intersects at most 0{y/n) edges

of 7.

Moreover, we have

Lemma 10.5 The set of 0{\ogn) spanning paths computed by the above algorithm have

the property that, for any query line L we can determine, in O(logn) time, a path that i

intersects in at most 0{^/n) edges. This requires an additional linear preprocessing time

and storage.
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Proof: Let A be the set of triangles computed in the proof of Lemma 10.2. Suppose the

dual of r* lies in A^ G A, and let ({. be the point selected from A^. Then (^ is a good line

for at least one path T,, i.e. it meets at most 0(\/n) edges of T,. By Lemma 10.2. I also

meets only 0{\/n) edges of that path. Moreover, for any given £', we can find (i, (and thus

the corresponding path T,) in O(logn) time, using an efficient point location algorithm:

since the map formed by A has only 0{n) faces, linear preprocessing time and storage

suffices [EGSt]). Hence, the lemma follows.

D

Remark 10.6:

(i) Note that the best known deterministic algorithm for constructing a single spanning

path with 0(\/n log n) stabbing number has 0(n^/'^ log^ n) time complexity. There-

fore it follows from Theorem 10.4 and Lemma 10.5 that the multi-tree structure is

better than the single path structure for aJl purposes except that the storage require-

ment is worse by a factor of O(logn). In some applications, however, it may not

be possible to use a multi-tree structure (e.g. reporting version of the simplex range

problem [CW]).

(ii) The spanning path obtained by our algorithm may have intersecting edges. However,

if the application requires the paths to be non self-intersecting, we can apply a

technique of [EGH*] that converts a polygonal path T with n edges into another, non

self-intersecting path T', in time 0(n log n), with the property that a line intersects

T' in at most twice as many edges as it intersects T.

(iii) If we use the randomized version of our red-blue intersection algorithm, to count

the intersections between the edges of T, and £, in Matousek's randomized algo-

rithm [Mab] for constructing T, then a{T) can be improved to O(v^logn) without

increasing the time complexity of his algorithm.

Chazelle and Welzl [CW] have shown that spanning trees with low stabbing number
can be used to develop an almost optimal algorithm for simplex range queries. Other

applications of spanning trees with low stabbing number include computing a face in an

arrangement of lines [EGH*], ray shooting in non-simple polygons [Agb] and impHcit point

location [Agb]. Our algorithm improves the preprocessing time as well as query time of

most of these apphcations. For example, Edelsbrunner et al. [EGH*] have shown that

given a set £ of n hnes, it can be preprocessed in 0(n^/^log^n) (randomized expected)

time, into a data structure of size 0(n log n), using a family T of O(logn) spcmning trees

with a{T) = s, so that for a query point p, the face in A{C) containing p can be computed
in time O(slog^n + A'), where K is the number of edges bounding the desired face. The
result of Matousek [Mab] implies that the preprocessing can be done deterministically in

(9(n^/'*log^n) time. However, if we use our algorithm for constructing the spanning trees,

we obtain
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Corollary 10.7 Given a set C of n lines, we can •pre-process it deterministically m 0{rr'^^

log"'''"^ n) time into a data structure of size O(nlogn) so that, for a query point p, we can

compute the face in A{C) containing the point p in 0{\/nlog n + K) time, where K is the

number of edges hounding the desired face.

Another result of [EGH*], combined with our algorithm, implies that

Corollary 10.8 Given a set C of n lines, we can preprocess it m 0{n'^^^ log''^'^^ n) time,

into a data structure of size 0(n log* n) so that, for any ray p emanating from a point p

in direction d, we can compute, in time 0(>/n log n). the intersection point between p and

the lines of C. that lies nearest to p.

a

Similarly using the result of [CW]-", we obtain

Corollary 10.9 Given a set S of n points m the plane, we can preprocess it deterministi-

cally, in 0(n''''^ log'^'*"^ n) time into a data structure of size O(nlogn) so that, for a query

line (., we can compute the number of points of S lying above i m 0{^/nlogn) time.

Remark 10.10: Recently Matousek and Welzl [MW] gave an alternative deterministic

algorithm to perform such half-plane range queries. Their algorithm has the same storage

and query time bounds, and its preprocessing time is only 0(n^''^ log n).

11 Space Query-time Tradeoff in Simplex Range Search

Finally we consider the following problem:

Given a set S of n points in the plane, preprocess S so that for a query triangle

A, we can quicWy count the number of points of S lying in A.

As just noted, the problem has been solved by Chazelle and Welzl [CW], using a

spanning tree with low stabbing number, in 0{n) space and 0(>/n log n) query time. In

this section we study the issue of tradeoff between the allowed space and query time.

Chazelle [Chb] has proved that if we allow 0{m) space, then the query time is at least

Q.(^). (However, this lower bound appHes to an arithmetic model involving operations

in a semigroup; in particular no subtractions are allowed.) For m = n^, a query can be

easily answered in O(logn) time, so the interesting case is when n < m < n'^. In this

'The half-plane range searching algorithm of Chazelle and Welzl uses a single spanning tree, but it

works even if we use a family of C>(logn) spanning trees instead of a single tree structure, though the space

complexity rises to 0(n log n).
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section we show that our partitioning algorithm in conjunction with Chazelle and WelzFs

technique yields an algorithm that counts the number of points lying in a query triangle

in 0( -^ log^''^ n ) time using 0{m) space, where n^+'o < m < n'^~'\ for some constants

€o,ei > 0. The preprocessing time of our algorithm is bounded by 0(n^m log'^'*'^^^ n),

which is faster than that of any previously known algorithm.

We first estabhsh this tradeoff for the half-plane range search problem: "Given a set 5

of n points, preprocess S so that, for any query line £. we can quickly count the number

of points lying below £."

. r

Figure 13: A triangle A and its dual A'

Dualize S to a set of n lines, 5', and partition the plane into M = 0{r'^) triangles

Ai, . . . , Am so that no triangle meets more than 0{j] lines of 5'. The dual of a triangle

A is a 3-corridor, namely the region lying between the upper and lower envelopes of the

three lines dual to the vertices of A (see [HW] and figure 13). Let A' denote the dual

of Ai. A hne ^ fully lies in A* if and only if t hes in A,, and a point p is in A' if and

only if p' meets A,. Let S, C S denote the points of S contained in A'; by construction

\S'\ = O(^). For each A', construct a family T' of O(log ^) spanning paths on the set 5,

with the property that, for every line i there exists a path T' G T', such that i intersects

at most O(J^) edges of 7^' (see Section 10). We preprocess every 7^' e T' into a data

structure of size O(^) for half plane range searching, as described in [CW], so that a query

can be answered in 0(w ^ log ^) time.

To answer a query, we first find the 3-corridor A* containing the query hne i. That

is, we locate the triangle A, containing the dual point t. Let $, denote the number of

points in 5 - 5, lying below i, which we will have precomputed for each i. We thus only

need to count the number of points of S, lying below i. By Lemma 10.5, we can find,

in O(log^) time, a path
7J'

G T' that intersects i in at most 0{J^) edges. Moreover,
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the number of points of S, lying below ( can be counted in O(Jjlog^) time using Tj',

as in Corollary 10.9. Hence, the total query time is bounded by OiJ^log^). Since each

T' requires 0(~ log -) space, the total space used is at most 0(nr log ^). We choose r =
m — to achieve 0{m) space, and the query time is therefore 0(-^log '' -2= + logn).

As for the preprocessing time, we spend 0{nr log n log*^ r ) time in partitioning the plane

into M triangles. Let W, C S' denote the set of lines lying below the triangle A,, so $, =

|Tr,|. It is easily seen that for two adjacent triangles A,, A_,, W, — Wj C S'LiSj. Therefore,

$, for each A,, can be computed in time 0{nr), spending 0{n) time at the first triangle

plus O(-) time at each of the remaining triangle. We can compute $,, for each triangle

A,, in O(nrlogn) time, and, by Theorem 10.4, we can construct T' in O ( fM log"'"'"^ ^

time. It follows from [CW] that 7^' can be preprocessed in O(Mog^) time for answering

half-plane range searching. Therefore the total time spent in preprocessing is at most

P{n) = O(nrlognlog'^r) -f O
( f-) • rMog"'+^ -

r

= O n—^^ log n log- r + n^/V—^log-+^

= o(m log-+' n + nV^log'^+^Z^ ^"j

By Chazelle's lower bound mentioned above, we obtain

Theorem 11.1 Given a set S of n points in the plane and rilogn < m < n^ storage,

we can preprocess S, in 0(m log'^"''^ n + n^/rr^\og'^'^^^^ -^) time, so that for any query line

i, we can count the number of points of S lying below £ m time 0{^-log^^^ -j—|- logn),

using 0(m) space. This is optimal up to a polylog factor.

D

Remark 11.2:

(i) Matousek's original algorithm [Maa] can also be used to obtain the same tradeoff.

However, since we use large values of r, our preprocessing is faster than that obtain-

able by Matousek's algorithm. We have recently learnt that Chazelle [Che] has also

independently obtained a similar result.

(ii) We can reduce a ^log^ factor in the query time, if we compute a single spanning

path instead of C>(logn) paths. But then the (deterministic) time complexity of

computing one such path rises to 0{^ log -).
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(iii) Notice that the counting version of the half-plane range query problem is more dif-

ficult than the reporting version; for the latter version, Chazelle et al. [CGL] have

given an O(logn + A') algorithm to report all K points lying below the query hne,

using only 0{n) space and 0{n\ogn) preprocessing.

Next, we extend the above algorithm to obtain a similar tradeoff for the slanted range

search problem: "Given a set S of n points, preprocess 5 so that, for a query segment e,

we can count efficiently the number of points that he in the semi-infinite trapezoidal strip

lying directly below e." Let us denote the number of such points by 'l'(e) (see figure 14).

Figure 14: Instance of a slanted range searching; ^{e) = 9

Chazelle and Guibas [CG] have given an optimal algorithm for the reporting version of

the slanted range query problem, which reports all K such points in O(logn + K) time,

using 0(n) space and 0(n log n) preprocessing. Since the half plane range search problem

is a special case of the slanted range search problem, the lower bound on the query time

for the slanted range search problem, with 0{n) storage, is also ri(-4=). Our tradeoff is

obtained a^ follows.

Construct a binary tree B on the x-projections of the points in S as follows. Sort the

points of S in increasing x order. Decompose the sorted set into - blocks, each containing

at most c points, for some fixed constant c > 0, and associate each block with a leaf of

B. Each node u of H is thus associated with the set Sy C 5 of points stored in the leaves

of the subtree of B rooted at v. For each node v of B we preprocess the points in St, for

answering half-plane range queries, using the above algorithm, with r = r,, where r, is a

parameter depending on the level i of v in B. A segment e is called a canonical segment

if there is a node v ^ B such that the x-projection of e covers the x-projections of all

the points in S^, and of no other point in 5 — Sy. Observe that, for a canonical segment

e, ^(e) can be computed by solving a half-plane range query at the corresponding node.

In general, a query segment e can be decomposed into k < 21ogn canonical subsegments
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ej et, such that at most two of them correspond to nodes at the same level of B (cf.

[PS]). Thus ^(e) =
Y.'^-i ^(e, ), which implies that 'l'(e) can be computed by answering at

most 21ogn half-plane range queries.

Since the nodes of the same level are associated with pairwise disjoint sets of points.

and we are choosing the same value of r for all nodes of the same level, the space s{n) used

by our algorithm is

logn

s{n) = 0(^ nr.logn).
1=1

Let m = n^. where 1 -I- eo < 7 < 2 — ei, for some constants eo^ fi > 0. If we choose r,

Ti n
= —— , where n^ — is the size of each set Sy at level i, we have

logn 2'"^

(n) = OnlognX:r
7^1 logn

log"
/ n. \ ''"^

^ 1=1

= 0{n'^) (because 7 > 1 + eo)

= 0{m).

Next, the total time spent in answering a query is

logn/ log n r—
Q{n) = C>(^./^logn^

/'ogn ,

^ 1=1 ^

= 0(n'-'''Hog'^^n\ (because7 <2-ei;

As for the time required in preprocessing, we spend 0((n,T, -|- n^^ y/F,) log'^'^^ n) at a

node of the i"' level. Since there are 2' nodes at level i, the overall preprocessing time is

bounded by

P{n) = ff O (2'(n.r. + ny'^/F;) • log-+^ n)

logn . 3/2

= ^0((nT. + ^.yF;)-log-+>n)
1=1 *- '
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l°g" / / r,--! n3/2 n.

\ logn
log" n

o + ^ log^+i

n

logn \/log n

,

0(nxAjlog^+^/'n) (becausem < n^)

Therefore, we have

Theorem 11.3 Given a set S of n points in the plane, and n>+'° < m < n^~'\ /or some

constants Cq. fi > 0. we can preprocess S, in 0(n>/m log'^'^^^^ n) time, into a data structure

of size 0{m) so that, for a query segment e, ^{e) can he computed in 0(^log^/^ n) time.

This IS optimal up to a polylog factor.

Remark 11.4:

(i) The remarks following Theorem 11.1 apply here as well.

2-£
(ii) If nlog^n < m < n^+S for all e > 0, thenQ(n) = C>(^log^n). Similarly, if m > n

for all e > 0, then a more careful analysis shows that Q(n) = 0{^ log^^^ -^ -I- logn)

Pz

Figure 15: Two types of triangles

Finally, we show how to solve the simplex range query problem, using Theorem 11.3.

Let A denote a triangle with vertices pi, p2 and p^. Assume that pi is the leftmost vertex

and pTpi lies above pTpi (see figure 15). If i{p2) < ^(P3), then the number of points in A
is

^HipTPi) + ^{pm) - *(prpi),

and if x{p2) > ^(pa), then the number is

'I'(pTpI) - ^{pm) - ^(pWs))-

It thus follows from Theorem 11.3 that
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Theorem 11.5 Given a set S of n points m the plane and n^"*"'" < m < n'^~^K for some

constants eo-^i > 0- ^^ can preprocess S. in 0(n-v/m log"'"'"^''^ n) time, into a data structure

of size 0{m) so that, for a query triangle A. we can count the number of points contained

in A in 0(-^log^/^n) time.

Remark 11.6:

(i) If n log' n < m < n^"*"'. for any e > 0. then the query time becomes O(-^log^n).

Similarly, if m > n^'' for all e > 0. then Q{n) = 0{^\og'''^ -^ +logn).

(ii) Notice that we use subtraction to count the number of points lying inside a triangle.

It is not known whether Chazelle's lower bound [Chb] can be extended to the case

where we use subtraction, that is to the group model. Therefore, we do not know

how sharp our bounds are in that model.

12 Conclusions

In this paper we presented various applications of our partitioning algorithm, described in

a companion paper [Aga]. Most of the algorithms described in this paper have a similar

flavor. In particular, we first give a simple but slower algorithm with running time roughly

TTiy/n or Uy/rn, ajid then combine it with our partitioning algorithm to obtain a faster

algorithm. As mentioned in the Introduction, we do not need the second phase of our

partitioning algorithm in several applications, because the number of triangles produced

in the first phase is sufficiently small to imply the asserted running time. For example,

consider the problem of computing incidences between a given set of m points and a set

of n lines in the plane, aiid suppose we perform only the first phase of our partitioning

algorithm. Equation (3.2) implies that the running time of the algorithm

M
T{m,n) < ^ 0(m, i/n^log^''^ 72, 4- n, log n.) + 0((m + nr log'" r) log n),

:= 1

where E^^i rn, = m, n, = O(^) and M = 0(r2 log"^ r). Therefore,

/ fn n ^^ \
T{m,n) = O ,/-logi/2-V m, + 0((nr log"' r + m) log n)

f rriy/n
, .z, \ ^^= 0\ —^ log ' n 4- nr log*" r log n

J

+0(m log n)

f m2/3 ]Agam. if we choose r = max {
— — — ,2 } , we get

r(m,n) = oL2/V/Mog2/3ulog-/3^ + (m + n)logny

Applications of partitioning algorithm May 15. 1989



CONXLUSIONS ^

Similarly, we can show that we do not need the second phase of the partitioning proce-

dure for the algorithms presented in Section 4-8. However, we do need it for approximate

half plane range searching, constructing spanning trees with low stabbing number and

simplex range searching.

Although this paper describes efficient algorithms for several problems, which improve

previous, often randomized techniques, there is no reason to believe that all the algorithms

presented here are close to optimal. Some of these problems that deserve further atten-

tion are Hopcroft's problem, counting segment intersections, red-blue intersection, and

constructing spanning trees with low stabbing number. One of the most intriguing open

problems is whether there exists an 0(n log r?) algorithm (or. for that matter any algorithm

faster than those given above) for counting segment intersections, or for counting (or just

detecting) red-blue segment intersections. The "red-blue'" version of such an algorithm

would also be able to detect an incidence between points and lines (Hopcroft's problem) in

the same time. Another interesting open problem is to obtain a faster algorithm for con-

structing a spanning tree (or family of spanning trees) with low stabbing number, because

that will improve the preprocessing time of various other problems (as in [EGH*], [Agb]).
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